

Discerning and Completing Objectives with an Artificial
Neural Network in a Semi-Stochastic Environment

Patrick Abiney

Mechanical Engineering Department
Northwestern University

Evanston, IL 60208
patrickabiney2017@u.northwestern.edu

Abstract - Multilayer perceptrons and their
many variants have proven capable of dividing
many nonlinear decision surfaces. Images, as
well as video, are able to be classified using
specialized multilayer perceptrons. By using
keystroke probabilities as a label and the
incoming image as the key, one could
theoretically construct an artificial neural
network capable of playing a video game. With
the proper layer and hyperparameter
configuration, one could theoretically
overcome complex issues for artificial
intelligences such as juggling multiple
objectives, completing objectives in a logical
order, and traversing a complex labyrinth that
both changes over time as well as requires
backtracking.

Keywords – TensorFlow; TFlearn; OpenCV;
SURF; VBA-M; Northwestern University;
Robotics; Python; Pokémon;

I. Intro
Image, and in particular video,

recognition is a topic that has many schools of
thought and no one-size fits all solution. There
exist computer vision algorithms that utilize
mathematical properties of images to manipulate
pixels and find meaning within them. However,
each algorithm is heavily customized to solve a
specific problem rather than provide an arbitrary
interface that one can simply feed an image into
and output a desired result.

A. Interest in Topic

Convolutional Neural Networks have
been proven to play games in the past. However,
a known problem is having a neural network
handle a multi-objective situation like those in
role play games. One of the many problems with

these situations is that traditional convolutional
layers do not have a concept of time or memory.

B. Proposed Work

In order to construct a custom neural
network to discern and complete objectives for a
role playing game, a loop will need to be in
place in which the game’s screen is captured,
processed by the network, and then keystrokes
are propagated to the video game.

Samples are required in order to train
the neural network. A sample gathering
application that launches the game emulator,
records keystrokes and images in order, and
outputs the results.

C. Initial Feasibility

One may assume a solution to this
problem would be to use a Multi-Layer
Perceptron as these have proven to solve for
image recognition in the past, though some
better solutions do exist, but many variants exist,
each with several hyperparameters. One cannot
find a one size fits all solution for this problem
as neural networks need to be, just like other
forms of visual computation, heavily
customized.

One of many variants of the Multi-Layer
perceptron, Convolutional Neural Networks
pose a surprising threat to image recognition as
they take into account not only the pixels value
but also the distance to like pixels and are built
in a fashion that resembles the visual cortex.
Still, there is no concept of time that is required
for video.

Long Short-Term Memory layers take
advantage of time to apply input degrade, output
degrade, and forget rates.

II. Work
A. Deep Neural Network (DNN) Structure

1

mailto:patrickabiney2017@u.northwestern.edu

Discerning and Completing Objectives with an Artificial Neural Network in a Semi-Stochastic
Environment
Patrick Abiney
Northwestern University Department of Mechanical Engineering

Multilayer perceptrons are capable of
solving non-linear decision surfaces, though not
always well. Taking multiple multilayer
perceptrons and layering them creates deep
neural networks. There are still many nuances
and no one-size fits all solution. For this project
a combination of Convolutional Neural Network
layers, Long Short-Term Memory Layers, and
fully connected layers to process images and
time to produce keystroke probabilities as
outputs.

1) DNN Block Diagram
The block diagram in figure 1 depicts

the flow from input to output. There will be a 3
dimensional image input. The three dimensions
of the input represent color channels, image
height, and image width. Time will be tracked
within the Long Short-Term Memory layer. The
two layers are connected with a fully connected
layer to bridge the features map output from the
second Convolutional Layer’s ReLU layer to the
inputs of a Long-Short Term Layer. From the
Long Short-Term Memory Layer’s output we
will use another fully connected layer to output
only keystroke probabilities for eight key values
corresponding to each button on the original
Game Boy.

Figure 1, DNN Layers Block Diagram

2) Fully Connected Layers
A fully connected layer is one that most

closely resembles a traditional Multi-Layer
Perceptron. Many units exist, all connected to
one another within the layer. Because every
node is connected within a Fully Connected
Layer, there is no concept of distance between
nodes in this type of Artificial Neural Network.
The interconnectivity within the layer can be
seen in the Fully Connected Block Diagram,
figure 2.

Figure 2, Fully Connected Layer Block Diagram

3) Convolutional Layers
Convolutional Neural Network layers

are a variant of a multilayer perceptron. A key
difference from a Convolutional Neural Network
layer and a Fully Connected Neural Network
layer is that a COnvolutional Neural network
does have a concept of nodal distance.

Additionally Convolutional layers are
designed to act similarly to that of the
mammalian visual cortex.This is not to say that
they are in any way an actual representation of
the mammalian visual cortex, but rather a
complex statistical function that simply finds a
probable outcome in a complex decision space.
The mammalian brain is far more complex and
stochastic than any artificial neural network
model.

The layer takes in a three dimensional
input in theory (channels, width, and height),
and outputs a three dimensional features map. In
figure 3, a block diagram representing a
common Convolutional Neural Layer can be
seen. A filter samples across the entire height
and width of the image and applies a dot product
between the filter and the input.[8]

2

Discerning and Completing Objectives with an Artificial Neural Network in a Semi-Stochastic
Environment
Patrick Abiney
Northwestern University Department of Mechanical Engineering

Figure 3, Convolutional Layer Block Diagram[8]

4) ReLU Activation
A Rectified Linear Unit is a layer of

neurons that apply non-saturating half-wave
rectification through a mathematical function,
depicted in equation 1.[7]

(X) ax(0, X)f = m (1)[7]

In equation 1, X represents the input to

the neuronal layer.[7] A ReLU function will
increase the nonlinear properties of both the
network layer and the network in entirety
without interfering with the input fields of a
given convolutional layer.[8] There are other
activation functions that may prove more
favorable depending on the application at hand.
For convolutional neural networks, Rectified
Linear Units are prefered for their speed and
preservation of accuracy in generalistic
predictions.[8]

5) Long Short-Term Memory Layers
A long short-term memory layer is a

variant of a normal Recurrent Neural Network
Layer that remembers values for short or long
periods of time well.[10] The difference between
the two, LSTM compared to RNN, is that a long
short-term memory layer adds in memory
components including forget gates, input gates,
and output gates.

Figure 5, Long Short-Term Memory Layer Block Diagram[9]

Figure 5 depicts the functional logic of a

long short-term memory layer. The relationship
between the input, output, and forget gates. X t
represents the neuronal input of the layer, which
is fed into all three gates and a sigmoidal. The
output of the sigmoidal function is cross
multiplied with the output from the input gate.
The resulting product is then fed into the cell
state vector along with the cross product of the
output from the forget gate and the output from
cell state vector. The output of the cell state
vector is fed into every gate, fed into a cross
product function with the output of the forget
gait, and fed into a sigmoidal function. The
result of this sigmoidal function is crossed with
the output of the output gate to produce the
output of the layer.

A. Training

Training the neural network is the most
time consuming aspect the project besides the
programming itself. One can gather samples of
people playing Pokémon in the form of images
and keystrokes. Using reinforcement learning,
these samples can be used to train the artificial
neural network.

1) Sample Gathering
In order to train the artificial neural

network samples needed to be gathered from
playthroughs of Pokémon Blue Version. An
application was constructed in python to launch
the VBA-M emulator, record every key pressed,
and record the corresponding images.

3

Discerning and Completing Objectives with an Artificial Neural Network in a Semi-Stochastic
Environment
Patrick Abiney
Northwestern University Department of Mechanical Engineering

2) Experimentation
Within the neural network itself there

are many parameters that when altered change
the functionality and performance of the neural
network. Traditionally one would create a small
sample and validation set and then test each
combination of parameters while recording their
performance for comparison later.

Other experimentation in neural
networks can involve variations in layer
structure rather than configuration. In the
experiments carried out in this project, the
neural network structure was determined before
experimentation after conducting research.

B. Gameplay

A videogame emulator interfaced with
an artificial neural network will provide a more
stable loop than using a physical game system
both when capturing and when propagating
commands and will be used for this experiment.

1) Gameplay Block Diagram
There are fundamentally two halves to

the gameplay loop, as seen in figure 7. In the
game emulator half runs Pokémon Blue Version
in English and is represented in the diagram by
the green block. This process will run at the top
of the desktop so it is in focus and captures any
keystrokes generated. The other half of the
diagram contains all of the logical framework to
capture and process images, followed by sending
keystrokes. pyscreenshot is used to capture a
section of the screen. OpenCV is used to process
the image from pyscreenshot before sending it to
the artificial neural network. The artificial neural
network will process the images and output
keystroke probabilities. Finally PyKeyboard will
find which key, if any, was most likely pressed
and generates that command.

Figure 7, Gameplay Block Diagram

2) Performance
The current state of performance is less

than desirable. Though able to predict the
correct keystroke 70% of the time with image
sets for training and validation, while in an
evaluation loop the artificial neural network
produces the same values repeatedly. Future
work could be done to fix this problem like
adding SURF or SIFT, shrinking image sizes,
restructuring the neural network, and even
upgrading hardware.

III. Dependencies
In the course of development several

software dependencies were chosen to make the
implementation more stable, syntactically
pleasant, and functional.

A. VBA-M

“VBA-M is a fork from the now inactive
VisualBoy Advance project, with goals to
improve the compatibility and features of the
emulator…”[3] VBA-M is an open source
GameBoy Advanced, GameBoy Color, and
GameBoy emulator. The emulator is a key
component for sample gathering as well as
evaluation of the resulting network.

B. TensorFlow ™

“TensorFlow™ is an open source
software library for numerical computation
using data flow graphs. Nodes in the graph
represent mathematical operations, while the
graph edges represent the multidimensional data
arrays (tensors) communicated between them.
The flexible architecture allows you to deploy
computation to one or more CPUs or GPUs in a

4

Discerning and Completing Objectives with an Artificial Neural Network in a Semi-Stochastic
Environment
Patrick Abiney
Northwestern University Department of Mechanical Engineering

desktop, server, or mobile device with a single
API.”[1]

C. TFlearn

“TFlearn is a modular and transparent
deep learning library built on top of Tensorflow.
It was designed to provide a higher-level API to
TensorFlow in order to facilitate and speed-up
experimentations, while remaining fully
transparent and compatible with it.”[2]

D. OpenCV

“OpenCV (Open Source Computer
Vision Library) is an open source computer
vision and machine learning software library.”[4]

“The library has more than 2500
optimized algorithms, which includes a
comprehensive set of both classic and
state-of-the-art computer vision and machine
learning algorithms. These algorithms can be
used to detect and recognize faces, identify
objects, classify human actions in videos, track
camera movements, track moving objects,
extract 3D models of objects, produce 3D point
clouds from stereo cameras, stitch images
together to produce a high resolution image of
an entire scene, find similar images from an
image database, remove red eyes from images
taken using flash, follow eye movements,
recognize scenery and establish markers to
overlay it with augmented reality, etc.”[4]

E. PyKeyboard

"A simple, cross-platform python
module for providing keyboard control.”[6]

PyKeyboard is a simple python module
that works with VBA-M.

F. pyscreeenshot

“The pyscreenshot module can be used
to copy the contents of the screen to a PIL or
Pillow image memory. Replacement for the
ImageGrab Module, which works on Windows
only. For handling image memory (e.g. saving to
file, converting,..) please read PIL or Pillow
documentation.”[5]

IV. Pitfalls

Over the course of development several
pitfalls were encountered that delayed the
project. The operating system itself initially
seemed to be an issue as the VBA-M source on
GitHub required the latest version of Ubuntu.
After a new environment we set up work was
able to continue until the time came to train
large datasets of several thousand images. The
current development machine is incapable of
handling so many images and as a result crashes
the application. Smaller data sets are able to
execute but not enough information is learned
from the images to successfully play the game.

V. Future Work
A. SURF

Speeded up robust features is a patented
algorithm that is able to find key features within
an image. SURF could be a possible solution for
the current live loop not detecting key features.
The SURF algorithm is in OpenCV but not the
standard library because the algorithm is
patented.

“To detect interest points, SURF uses an
integer approximation of the determinant of
Hessian blob detector, which can be computed
with 3 integer operations using a precomputed
integral image. Its feature descriptor is based on
the sum of the Haar wavelet response around the
point of interest.”[11]

Changes to how the neural network is
structured will need to be made to accommodate
the list of features from OpenCV. These key
features could be fed into any of the existing
layers. That may not make sense in this situation
though. Additional experimentation may need to
be done to find a proper network structure when
adding in OpenCV. One possible new layer may
be a pooling layer which pools features together.

B. Possible Applications

Future applications for artificial
intelligences upon success of this project range
from testing bots for game level designers as

5

Discerning and Completing Objectives with an Artificial Neural Network in a Semi-Stochastic
Environment
Patrick Abiney
Northwestern University Department of Mechanical Engineering

well as enemies and companions for players in
games. If one were to apply the same concepts
to things like asset creation software or social
media, one may have the groundwork for some
powerful and helpful bots to help contribute to
artist pools and social media advertisers.

VI. Conclusion
The issues involved with objective

recognition in role play games may not have
been solved by this project in the current state.
However research has been done to uncover
possible solutions. When the fruits of this
project come to fruition, there are possible
applications for future research and projects.

References
[1] About TensorFlow. Retrieved March 19, 2017, from

https://www.tensorflow.org/.

[2] Damien, A. TFLearn: Deep learning library featuring a
higher-level API for TensorFlow. Retrieved March 19,
2017, from http://tflearn.org/.

[3] VisualBoy Advance - M - About VBA-M. Retrieved
March 19, 2017, from http://vba-m.com/about.html.

[4] ABOUT. Retrieved March 19, 2017, from
http://opencv.org/about.html.

[5] P. (2017, February 27). Pyscreenshot. Retrieved March
19, 2017, from https://github.com/ponty/pyscreenshot.

[6] S. (2013, December 07). PyKeyboard. Retrieved
March 19, 2017, from
https://github.com/SavinaRoja/PyKeyboard.

[7] Rectifier (neural networks). (2017, March 18).
Retrieved March 19, 2017, from
https://en.wikipedia.org/wiki/Rectifier_(neural_networ
ks).

[8] Convolutional neural network. (2017, March 16).
Retrieved March 19, 2017, from
https://en.wikipedia.org/wiki/Convolutional_neural_ne
twork.

[9] Klaus Greff; Rupesh Kumar Srivastava; Jan Koutník;
Bas R. Steunebrink; Jürgen Schmidhuber (2015).
"LSTM: A Search Space Odyssey".

[10] Long short-term memory. (2017, March 17). Retrieved
March 19, 2017, from
https://en.wikipedia.org/wiki/Long_short-term_memor

y

[11] Speeded up robust features. (2017, February 26).
Retrieved March 20, 2017, from
https://en.wikipedia.org/wiki/Speeded_up_robust_feat
ures

6

